ABSTRACT Title of dissertation: THE EFFECTS OF COUPLING DELAY AND AMPLITUDE / PHASE INTERACTION ON LARGE COUPLED OSCILLATOR NETWORKS
نویسندگان
چکیده
Title of dissertation: THE EFFECTS OF COUPLING DELAY AND AMPLITUDE / PHASE INTERACTION ON LARGE COUPLED OSCILLATOR NETWORKS Wai Shing Lee, Doctor of Philosophy, 2013 Dissertation directed by: Professor Edward Ott Department of Electrical and Computer Engineering Professor Thomas M. Antonsen Jr. Department of Electrical and Computer Engineering The interaction of many coupled dynamical units is a theme across many scientific disciplines. A useful framework for beginning to understanding such phenomena is the coupled oscillator network description. In this dissertation, we study a few problems related to this. The first part of the dissertation studies generic effects of heterogeneous interaction delays on the dynamics of large systems of coupled oscillators. Here, we modify the Kuramoto model (phase oscillator model) to incorporate a distribution of interaction delays. Corresponding to the continuum limit, we focus on the reduced dynamics on an invariant manifold of the original system, and derive governing equations for the system, which we use to study stability of the incoherent state and the dynamical transitional behavior from stable incoherent states to stable coherent states. We find that spread in the distribution function of delays can greatly alter the system dynamics. The second part of this dissertation is a sequel to the first part. Here, we consider systems of many spatially distributed phase oscillators that interact with their neighbors, and each oscillator can have a different natural frequency, and a different response time to the signals it receives from other oscillators in its neighborhood. By first reducing the microscopic dynamics to a macroscopic partial-differentialequation description, we then numerically find that finite oscillator response time leads to many interesting spatio-temporal dynamical behaviors, and we study interactions and evolutionary behaviors of these spatio-temporal patterns. The last part of this dissertation addresses the behavior of large systems of heterogeneous, globally coupled oscillators each of which is described by the generic Landau-Stuart equation, which incorporates both phase and amplitude dynamics. Our first goal is to investigate the effect of a spread in the amplitude growth parameter of the oscillators and that of a homogeneous nonlinear frequency shift. Both of these effects are of potential relevance to recently reported experiments. Our second goal is to gain further understanding of the observation that, at large coupling strength, a simple constant-amplitude sinusoidal oscillation is always a solution for the dynamics of the global order parameter when the system has constant nonlinear characteristics. THE EFFECTS OF COUPLING DELAY AND AMPLITUDE / PHASE INTERACTION ON LARGE COUPLED OSCILLATOR NETWORKS
منابع مشابه
Amplitude and phase effects on the synchronization of delay-coupled oscillators.
We consider the behavior of Stuart-Landau oscillators as generic limit-cycle oscillators when they are interacting with delay. We investigate the role of amplitude and phase instabilities in producing symmetry-breaking/restoring transitions. Using analytical and numerical methods we compare the dynamics of one oscillator with delayed feedback, two oscillators mutually coupled with delay, and tw...
متن کاملRestoring oscillatory behavior from amplitude death with anti-phase synchronization patterns in networks of electrochemical oscillations.
The dynamical behavior of delay-coupled networks of electrochemical reactions is investigated to explore the formation of amplitude death (AD) and the synchronization states in a parameter region around the amplitude death region. It is shown that difference coupling with odd and even numbered ring and random networks can produce the AD phenomenon. Furthermore, this AD can be restored by changi...
متن کاملA common lag scenario in quenching of oscillation in coupled oscillators.
A large parameter mismatch can induce amplitude death in two instantaneously coupled oscillators. Alternatively, a time delay in the coupling can induce amplitude death in two identical oscillators. We unify the mechanism of quenching of oscillation in coupled oscillators, either by a large parameter mismatch or a delay coupling, by a common lag scenario that is, surprisingly, different from th...
متن کاملAmplitude death in oscillator networks with variable-delay coupling.
We study the conditions of amplitude death in a network of delay-coupled limit cycle oscillators by including time-varying delay in the coupling and self-feedback. By generalizing the master stability function formalism to include variable-delay connections with high-frequency delay modulations (i.e., the distributed-delay limit), we analyze the regimes of amplitude death in a ring network of S...
متن کاملepl draft Chimera states: Effects of different coupling topologies
Collective behavior among coupled dynamical units can emerge in various forms as a result of different coupling topologies as well as different types of coupling functions. Chimera states have recently received ample attention as a fascinating manifestation of collective behavior, in particular describing a symmetry breaking spatiotemporal pattern where synchronized and desynchronized states co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013